Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22280189

RESUMO

We investigate differences in protection from previous infection and/or vaccination against infection with Omicron BA.4/5 or BA.2. We observed a higher percentage of registered previous SARS-CoV-2 infections among 19836 persons infected with Omicron BA.4/5 compared to 7052 persons infected with BA.2 (31.3% vs. 20.0%) between 2 May and 24 July 2022 (adjusted odds ratio (aOR) for testing week, age group and sex: 1.4 (95%CI: 1.3-1.5)). No difference was observed in the distribution of vaccination status between BA.2 and BA.4/5 cases (aOR: 1.1 for primary and booster vaccination). Among reinfections, those newly infected with BA4/5 had a shorter interval between infections and the previous infection was more often caused by BA.1, compared to those newly infected with BA.2 (aOR: 1.9 (1.5-2.6). This suggests immunity induced by BA.1 is less effective against a BA.4/5 infection than against a BA.2 infection.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270851

RESUMO

BackgroundChildren play a key role in the transmission of many infectious diseases. They have many of their close social encounters at home or at school. We hypothesized that most of the transmission of respiratory infections among children occur in these two settings and that transmission patterns can be predicted by a bipartite network of schools and households. Aim and methodsTo confirm transmission over a school-household network, SARS-CoV-2 transmission pairs in children aged 4-17 years were analyzed by study year and primary/secondary school. Cases with symptom onset between the 1st of March 2021 and the 4th of April 2021 identified by source and contact-tracing in the Netherlands were included. In this period, primary schools were open and secondary school students attended class at least once per week. Within pairs, spatial distance between the postcodes was calculated as the Euclidean distance. ResultsA total of 4,059 transmission pairs were identified; 51.9% between primary schoolers; 19.6% between primary and secondary schoolers; 28.5% between secondary schoolers. Most (68.5%) of the transmission for children in the same study year occurred at school. In contrast, most of the transmission of children from different study years (64.3%) and most primary-secondary transmission (81.7%) occurred at home. The average spatial distance between infections was 1.2km (median 0.4) for primary school pairs, 1.6km (median 0) for primary-secondary school pairs and 4.1km (median 1.2) for secondary school pairs. ConclusionThe results provide evidence of transmission on a bipartite school-household network. Schools play an important role in transmission within study years, and households play an important role in transmission between study years and between primary and secondary schools. Spatial distance between infections in a transmission pair reflects the smaller school catchment area of primary schools versus secondary schools. Many of these observed patterns likely hold for other respiratory pathogens.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270457

RESUMO

Given the emergence of the SARS-CoV-2 Omicron BA.1 and BA.2 variants and the roll-out of booster COVID-19 vaccination, evidence is needed on protection conferred by primary vaccination, booster vaccination and previous SARS-CoV-2 infection by variant. We employed a test-negative design and used multinomial logistic regression on data from community PCR testing in the Netherlands. S-gene target failure (SGTF) was used as proxy to discern Delta, Omicron BA.1 and Omicron BA.2 infections. Two cohorts were defined to assess protection from vaccination and previous infection by variant: Delta-Omicron BA.1 cohort including data from 22 November 2021 to 7 January 2022 (n = 354,653) and Omicron BA.1-BA.2 cohort including data from 26 January to 31 March 2022 (n = 317,110). In the Delta-Omicron BA.1 cohort, including 39,889 Delta and 13,915 Omicron BA.1 infections, previous infection, primary vaccination or both protected well against Delta infection (76%, 71%, 92%, respectively, at 7+ months after infection or vaccination). Protection against Omicron BA.1 was much lower compared to Delta infections, but BA.1 estimates were imprecise. In the Omicron BA.1-BA.2 cohort, including 67,887 BA.1 and 41,670 BA.2 infections, protection was similar against Omicron BA.1 compared to BA.2 infection for previous infection (34 and 38% at 7+ months post-infection), primary (39 and 32% at 7+ months post-vaccination) and booster vaccination (68 and 63% at 1 month post-vaccination). Higher protection was observed against all variants in individuals with both vaccination and previous infection compared with either one. Protection against all variants by either vaccination or infection decreased over time since last vaccination or infection. Primary vaccination with current COVID-19 vaccines and previous SARS-CoV-2 infections offer low protection against Omicron BA.1 and BA.2 infection. Booster vaccination considerably increases protection against Omicron infection, but decreases rapidly after vaccination.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269217

RESUMO

The SARS-CoV-2 Omicron variant has a growth advantage over the Delta variant, due to higher transmissibility, immune evasion, or a shorter serial interval. Using S-gene target failure (SGTF) as indication for Omicron BA.1, we identify 908 SGTF and 1621 non-SGTF serial intervals in the same period. Within households, we find that the mean serial interval for SGTF cases is 0.2-0.6 days shorter than for non-SGTF cases. This suggests that the growth advantage of Omicron is partly due to a shorter serial interval.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268121

RESUMO

Infections by the Omicron SARS-CoV-2 variant are rapidly increasing worldwide. Among 70,983 infected individuals (age [≥] 12 years), we observed an increased risk of S-gene target failure, predictive of the Omicron variant, in fully vaccinated (odds ratio: 5.0; 95% confidence interval: 4.0-6.1) and previously infected individuals (OR: 4.9: 95% CI: 3.1-7.7) compared with infected naive individuals. This suggests a substantial decrease in protection from vaccine- or infection-induced immunity against SARS-CoV-2 infections caused by the Omicron variant compared with the Delta variant.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266735

RESUMO

The extent to which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) break through infection- or vaccine-induced immunity is not well understood. Here, we analyze 28,578 sequenced SARS-CoV-2 samples from individuals with known immune status obtained through national community testing in the Netherlands from March to August 2021. We find evidence for an increased risk of infection by the Beta (B.1.351), Gamma (P.1), or Delta (B.1.617.2) variants compared to the Alpha (B.1.1.7) variant after vaccination. No clear differences were found between vaccines. However, the effect was larger in the first 14-59 days after complete vaccination compared to 60 days and longer. In contrast to vaccine-induced immunity, no increased risk for reinfection with Beta, Gamma or Delta variants relative to Alpha variant was found in individuals with infection-induced immunity.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263613

RESUMO

The objective of this study was to estimate vaccine effectiveness (VE) against COVID-19 hospitalization and ICU admission, per period according to dominating SARS-CoV-2 variant (Alpha and Delta), per vaccine and per time since vaccination. To this end, data from the national COVID-19 vaccination register was added to the national register of COVID-19 hospitalizations. For the study period 4 April - 29 August 2021, 15,571 hospitalized people with COVID-19 were included in the analysis, of whom 887 (5.7%) were fully vaccinated. Incidence rates of hospitalizations and ICU admissions per age group and vaccination status were calculated, and VE was estimated as 1-incidence rate ratio, adjusted for calendar date and age group in a negative binomial regression model. VE against hospitalization for full vaccination was 94% (95%CI 93-95%) in the Alpha period and 95% (95%CI 94-95%) in the Delta period. The VE for full vaccination against ICU admission was 93% (95%CI 87-96%) in the Alpha period and 97% (95%CI 97-98%) in the Delta period. VE was high in all age groups and did not show waning with time since vaccination up to 20 weeks after full vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...